集成光子-原子芯片的研究进展
原子与光子的相互作用可以实现量子比特信息的读取和存储,在量子信息处理中具有重要的应用前景。近年来围绕着单原子的囚禁、单原子阵列的排序以及原子量子比特的实验取得了一系列重要进展,[
然而,绝大部分冷原子系统都包含有激光冷却系统、原子的偶极阱系统、原子的内态操控和探测系统。这些原子系统具有体积庞大、质量大的缺点,在实际应用中面临着一系列困难。因此,原子系统的微型化和集成化成为一种趋势。随着纳米加工技术的发展,集成光学得到了迅速发展[
集成光子-原子芯片的发展起源于20世纪90年代,OVCHINNIKOV Y B等提出和验证了利用表面倏逝场囚禁原子,为集成微纳结构束缚原子提供理论和实验基础[
本文将对集成光子-原子芯片的技术进行综述和展望。光子-原子芯片的研究可以划分为两个研究方向,如
图1 集成光子-原子芯片技术结构示意图
Fig. 1 The illustration of integrated photon-atom chip
图2 光子-原子芯片的重要发展历程
Fig. 2 The key demonstrations in photon-atom chip
1 基于自由空间光场的光子-原子芯片
基于自由空间光场的光子-原子芯片主要是基于光学芯片实现MOT所需的特定偏振和方向的空间光场分布,从而实现对距离芯片表面几十微米到几毫米位置的原子团的激光冷却,进一步基于空间聚焦光场实现对原子的精细操控。如
1.1 集成原子冷却系统
将MOT系统小型化的尝试自冷原子领域早期就开始了。其中,韩国LEE K I等于1996年提出基于空心锥反射镜的MOT微系统[
图3 集成MOT系统图
Fig. 3 The illustration of MOT system
此后,基于光栅磁光阱的研究和应用逐渐展开[
1.2 片上自由空间光场束缚原子
在利用多普勒冷却获得芯片附近的冷原子团后,还可以进一步通过光偶极阱囚禁原子系综或者单原子,实现对原子的长时间俘获,从而实现具备更长相干时间的原子外态或内态。同时,还需要在光子-原子芯片上建立原子与集成光学波导的有效相互作用接口,来实现波导的光场模式与自由空间聚焦光场之间的有效转换,借助集成芯片上可扩展的光学器件实现对原子外态和内态的有效操控和探测。
首先,光栅是一类被芯片广泛采用的自由空间到波导模式转换的器件。
图4 集成光学芯片上产生自由空间束缚光场的装置
Fig. 4 The generation of free space light for trapping in the integrated optical chip
除了衍射光栅,还有很多微纳光学结构可以用于连接芯片与自由空间,实现波导模式到自由空间聚焦光场的转换。例如,GRANADOS E等通过集成金刚石拉曼共振激光器在芯片中心的上方形成汇聚的激光束[
2 基于近场的光子-原子芯片
2.1 从自由空间到原子芯片上的原子传送
波导模式与原子态如果要通过倏逝场直接相互耦合,原子与波导表面之间的距离必须小于波长。现有的原子技术主要是通过磁光阱在自由空间中获得冷原子团,因此在基于近场的光子-原子芯片中需要通过原子传送带将冷原子团从自由空间传送到波导表面与倏逝场耦合。原子传送带首先将原子囚禁在束缚光场形成的光学偶极阱阵列内,然后通过干涉光的频率或者相位差来移动束缚光场的位置,从而带动所囚禁原子运动。近几年在有关集成光子-原子芯片的实验中,出现了各种各样的原子传送带,将原子从自由空间MOT系统传送到集成芯片上。
基于电动反射镜的原子传送带是通过电动反射镜改变光束的反射角来控制束缚原子的位置实现原子的传送。该装置被LUKIN M D研究组应用于研究原子与光子晶体波导相互作用的实验中[
图5 原子传送带实验示意
Fig. 5 The illustration of the atomic conveyor belt
两束相对传输的光束干涉产生驻波场,当两束光的频率存在微小失谐时,驻波场将发生纵向移动,频率小失谐干涉光场可以用于原子传送带对原子的位置进行控制。如果干涉光束为原子的红失谐光,干涉驻波场的波腹将形成可以束缚原子的光学偶极阱。被束缚于波腹内的原子将随着驻波场运动,从而实现原子的传送[
2.2 片上近场束缚原子
2.2.1 波导结构
电介质表面的倏逝场强度沿着垂直于表面的方向指数衰减,作用范围小于光波长。处于波导表面的倏逝场与原子偶极矩相互作用可以对原子产生力的作用,选择合适的倏逝场波长可以克服范德瓦尔斯力形成光学偶极阱将原子束缚在电介质表面的近场范围内[
当光纤被拉得很细的时候,光纤内的光场将延伸到光纤外形成很强的倏逝场,而且光纤仍然能够保持比较好的低损耗传输特性[
图6 光纤锥表面倏逝场囚禁原子示意
Fig. 6 The illustration of atom trap with the evanescent field on the fiber taper
基于光纤锥的原子实验,原子与光纤锥模式可以通过倏逝场产生很强的相互耦合作用。但是光纤锥在光场的作用下会产生机械振动,并且随着光纤锥内光强的增大而增大,很不利于原子态的精确调控,从而很难实现量子比特。为了克服机械振动对原子的影响,固定在芯片上的集成波导被研究并应用于束缚原子,以获得稳定的光子-原子芯片。类似于光纤锥结构,波导内的传输模式可以延伸到波导表面形成倏逝场,倏逝场形成的光学偶极阱可以将原子囚禁于波导表面的近场位置处[
2000年BARNETT A H等提出使用集成波导内红蓝失谐光来束缚Cs原子[
图7 波导结构束缚原子的示意
Fig. 7 The structure of the integrated waveguide for trapping atoms
2.2.2 光子晶体结构
集成波导原子装置要求波导内用于囚禁原子的红蓝失谐光的功率比较高,在波导表面获得百µk以上的光学偶极阱,需要约几十mW的波导光功率[
由于光子晶体的谐振腔的共振波长受限于晶体的周期,腔内很难同时存在两个相邻波长的共振模式,因此无法通过红蓝失谐光的倏逝场来囚禁原子,而需要通过设计特定结构的光子晶体波导或者借助自由空间光束将原子束缚于光子晶体波导表面的近场范围内。美国的KIMBLE H J研究组于2013年提出使用周期性圆孔的光子晶体波导内的光场形成光学偶极阱囚禁原子[
图8 一维光子晶体波导束缚原子装置
Fig. 8 The structure of the 1D photonic crystal waveguide for trapping atoms
在一个位置同时形成光学偶极阱和调控光场,需要波长和晶体周期结构满足严格的匹配条件,给实验带来很多局限。因此,自由空间光场被用于辅助倏逝场将原子囚禁在光子晶体波导表面,降低光子晶体的结构要求,给实验带来更多操作自由度。THOMPSON J D等在研究Rb原子与光子晶体波导相互作用的实验中通过自由空间光的辅助作用将原子囚禁在波导表面。如
除了一维光子晶体波导,二维光子晶体结构也被用于束缚原子,二维光子晶体可以产生二维光学偶极阱阵列束缚原子形成二维原子阵列。2015年KIMBLE H J研究组将束缚原子的一维孔阵光子晶体波导推向二维孔阵光子晶体结构,获得二维原子阵列,如
图9 二维光子晶体束缚原子示意
Fig. 9 The structure of the 2D photonic crystal waveguide for trapping atoms
2.3 倏逝场与原子态的相互耦合作用
波导模式延伸到表面光场形成指数衰减分布的倏逝场,倏逝场可以作用于囚禁在近场的原子,实现原子与波导模式的直接耦合作用。波导模式可以通过倏逝场对原子态发生作用,同时原子又可以反作用于波导模式,此外,原子与原子之间又可以通过波导模式相互影响。这部分主要介绍不同微结构的光场模式与原子态相互耦合的相关研究工作。
2.3.1 波导结构
光纤锥的直径越小,传输模式延伸到表面的光场越多,形成的倏逝场越强,因此,光纤锥的传输模式与其表面的原子通过倏逝场可以发生有效的相互耦合作用[
图10 波导表面倏逝场与原子的相互作用
Fig. 10 The illustration of the coupling between the atom and the evanescent field on the waveguide
奥地利维也纳大学RAUSCHENBEUTEL A研究组将基于光纤锥的原子实验推向了量子领域。他们通过实验研究了光纤锥表面的Cs原子量子态的相干特性[
由于波导模式的光场主要分布在波导内部,延伸到表面的倏逝场很少,这给集成波导囚禁原子的实验带来了困难[
2.3.2 光子晶体结构
由于光子晶体内周期性的结构可以形成共振腔,共振增强场和原子之间可以发生很强的相互耦合作用[
2020年美国SAMUTPRAPHOOT P等设计折射率周期性分布的光子晶体波导与原子耦合[
2.3.3 回音壁微腔结构
在研究微纳结构与原子的近场相互作用过程中,不同的微结构既有其独特的优势又存在局限性。比如光纤锥可以提供很强的表面倏逝场用于原子囚禁和调控,但是存在机械振动限制了原子态的调控精度。集成波导虽然具有很好的稳定性,但是表面倏逝场强度有限,也给实验带来难度。光子晶体波导既可以提供增强的倏逝场又具有集成稳定性,但是对晶体结构要求很严格,实验灵活性受限。因此迫切需要一种微结构,既具以上各结构的优点同时又可以克服其缺点。圆形微环腔不仅支持高品质的回音壁模式,对光场模式具有共振增强作用,而且自由光谱范围小,腔内可以同时满足红蓝失谐光的共振,在腔表面形成稳定的光学偶极阱囚禁原子,同时腔模式通过倏逝场对原子态产生有效调控。圆形微环腔因在束缚和调控原子中的独特优势而受到广泛关注。
微球腔由于制作工艺简单,可以达到很高的Q值,在微腔表面形成很强的光场,因此最早被应用于与原子相互作用。由于微腔表面的倏逝场比较难形成稳定囚禁原子的光学偶极阱,一般通过自由空间光场辅助作用将原子囚禁在微腔表面,同时也提高了控制原子位置的自由度。美国KIMBLE H J研究组首先于1994年分析了绕微球腔运动的原子的物质波特性[
图11 各种与原子耦合的微腔结构
Fig. 11 The structure of the microcavity for coupling with the atoms
回音壁微瓶腔具有与微球腔类似的结构,如
微球、微瓶腔等结构虽然可以制备于集成芯片上,但很难与其他集成器件兼容,因此研究人员也在追求在平面芯片上的微腔上原子的囚禁和操控。根据电场的偏振方向,微环腔内共振的模式有TE和TM模,其基模的场分布如
图12 集成微环腔与原子耦合示意
Fig. 12 The illustration of the coupling between the integrated microring resonator with the atoms
实验中,为了便于传送带将冷原子从MOT转移到微环腔波导表面,美国HUNG C L研究组设计了基于蓝宝石基底的SiN微环腔的原子芯片,如
3 总结和展望
3.1 亟待解决的关键科学问题
光子-原子芯片领域的研究还处于探索阶段,离在实际应用中发挥不可替代的作用还有一段距离。未来几年这一前沿研究领域亟待突破的关键科学问题包括以下几个方面。
1)单原子阵列技术。为了更好地应用于量子信息处理,稳定和高速捕获确定性单原子阵列是一个重要关键技术。实现原子量子比特的基本操控、芯片上原子与微腔的强耦合以及光子-原子纠缠是光子-原子芯片进一步应用于量子相关领域的必经之路。
2)多功能器件的集成。将芯片上的成熟光学器件,包括片上倍频频率转换、高速电光调制器、高频声光调制器与光子-原子芯片结合,开发更复杂的集成回路和更新颖的原子相关应用也是一个重要的技术发展方向。此外,结合近期蓬勃发展的Metasurface器件,可能可以进一步提升芯片上用于束缚和操控原子的空间光场的调控能力。
3)芯片上光子-原子混合波导器件的研究。可以预见集成波导上的偶极阱也可以构成原子物质波的波导,从而可以潜在实现原子物质波回路的各种器件。结合波导上光子与原子的强相互作用,这种芯片上光子-原子的混合集成回路有望用于开发原子物质波相关的应用,例如惯性传感。
此外,光子-原子芯片在技术上还有两个挑战,包括芯片与光纤的封装和芯片与真空的封装。一方面,未来需要通过光纤实现芯片上的高效光学输入输出,能够实现多个端口多个波长的光纤到芯片的稳定耦合。而光纤与光子芯片的高效率耦合也是目前光子芯片研究领域的一个重要技术难点。另外一方面,原子系统目前对高真空的需求也制约着整个系统的进一步集成化,希望未来能够发展新的真空键合和封装技术,能够直接以芯片为基础实现冷原子系统所需真空。
3.2 未来展望
近十年光子-原子芯片技术得到了飞速发展,引起了光学、原子物理、量子信息等领域研究人员的关注。目前,已经在包括集成芯片上的原子冷却、单原子囚禁以及原子态探测等技术方面取得了一系列重要的实验进展。除了本文提到的冷原子相关的进展,热原子与光学芯片的封装也取得了很多进展,该系统中虽然原子与集成光学波导或微腔的相互作用时间较短,但是微纳结构增强的相互作用使热原子与芯片的结合在非线性光学和光谱学方面具有很大的吸引力。例如,以色列LEVY U研究组将SiN波导置于Rb原子气室内,研究在Rb原子作用下的微环腔的透过谱线[
- 2025年中科院分区表已公布!Scientific Reports降至三区
- 官方认定!CSSCI南大核心首批191家“青年学者友好期刊名单”
- 2023JCR影响因子正式公布!
- 国内核心期刊分级情况概览及说明!本篇适用人群:需要发南核、北核、CSCD、科核、AMI、SCD、RCCSE期刊的学者
- 我用了一个很复杂的图,帮你们解释下“23版最新北大核心目录有效期问题”。
- 重磅!CSSCI来源期刊(2023-2024版)最新期刊目录看点分析!全网首发!
- CSSCI官方早就公布了最新南核目录,有心的人已经拿到并且投入使用!附南核目录新增期刊!
- 北大核心期刊目录换届,我们应该熟知的10个知识点。
- 注意,最新期刊论文格式标准已发布,论文写作规则发生重大变化!文字版GB/T 7713.2—2022 学术论文编写规则
- 盘点那些评职称超管用的资源,1,3和5已经“绝种”了