高中数学模型教学思考
作者:林根新来源:原创日期:2012-12-14人气:750
一、数学模型是联系客观世界与数学的桥梁
在学习初等代数的时候,我们就已经接触过数学模型了.当然,那些问题是老师为了教会学生,而人为特意设置的.如我们以前解过这样的所谓“航行问题”.
例如:甲乙两地相距750 km,船从甲到乙顺水航行需要30 h,从乙到甲逆水航行需50 h,求船速、水速分别是多少?
设:用x,y分别表示船速和水速,可以列出方程:
(x+y)·30=750,(x-y)·50=750.
这组方程就是上述航行问题的数学模型,列出方程,原问题已转化为纯粹的数学问题,方程的解x=20 km/h,y=5 km/h,最终给出了航行问题的答案.
所以,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据内在规律作出一些必要的假设,运用适当的数学工具,得到的一个数学结构.数学模型是用数学语言来模拟空间形式和数量关系的模型.广义上讲,一切数学概念、公式、理论体系、算法系统都可称为数学模型,如:算术是计算盈亏的模型,几何是物体外形的模型等.狭义地说,只有反映特定问题的数学结构才称为数学模型,如一次函数是匀速直线运动的模型,不定方程是鸡兔同笼问题的模型等.
二、在探究问题的过程中运用数学模型
数学的思维方式和方法包括对数学问题的认识和解决问题的过程,并在知识的增长过程中发展了思维.在对数学问题的探究中,我们要注重领会用数学模型来优化数学过程,培养学生解决问题和创新思维的能力.
例如:要把数量不限的小球放在同一型号的箱内,每个箱内有10个格子,每一格放一个小球,这些箱子有的格子放有小球,而有的却空着.如果有两个箱子,它们至少一个对应的两个格子,一个有,另一个没有,那么,我们就认为这两个箱子不同.每个箱子最多放10个,最少放0个,问可能有多少个这样的箱子?
模型1 某建筑物装有10盏灯,在同一时刻的每盏灯都可以开或关.现在用各种方法开灯,两种开关方法只要有一盏灯的状态不同(开或关)就认为是不同的开法,所有的灯都关着也是一种开法.问有多少种开法?
模型2 现有一个十列格子组成的长方形表格,在每一行格子中都记有“+”号或“-”号,而行中只要有一个对应格的符号不同,就认为它们不同,问计有不同符号的行有多少种?
模型3 数字0和数字1能组成多少不同的“十位数”(包括数字左边出现的0的数也作为“十位数”)?
模型4 这个问题解决已显而易见,“十位数”的每一个位置只能是0或1两种可能,共有210=1024种不同的可能.模型2中的表格最多有1024行.模型1中的电灯的开法共有1024种.例子中箱子共有1024个.例1可以用三个模型来转换方式,使问题由难变易,是一种行之有效的解题方法.
在高中数学教学中进行数学模型训练,有助于学生加深对数学知识系统的学习,有利于培养学生的创新思维能力和实践能力,并为下一步利用数学模型解决实际问题打下坚实的基础.
三、函数f(x)=ax+b(a,b>0)模型
对于这类模型应用问题,首先根据题意得出目标函数,再把目标函数变形为f(x)=ax+b(a,b>0)的形式,最后根据ax+b≥2ab(a,b>0)求出最优值.
例如:假设森林发生火灾,火势以每分钟100 m2速度顺风蔓延,消防人员接到警报立即派消防队员前往扑救,在火灾发生后五分钟到达现场,现已知消防队员在现场平均每人每分钟灭火50 m2,所消耗的灭火材料、劳务津贴等费用为每人每分钟100元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1 m2森林损失费为60元,问应该派多少消防队员前去救火,才能使总损失最少?
这样的模型应用题出现频率较高,常常通过均值定理或函数的单调性求最值,此时要注意等号能否取到,必要时要讨论求之.
高中数学模型思维方法包括了高中数学问题的学习和解决问题过程,并随着知识的不断增长逐步培养创新思维.数学模型化思维来探索知识的过程,通过对知识原型的分析、提炼、加深,不断对原型的理解和概括,归纳原型的内在特质,再通过进一步演绎推理来求解,深化了对原型的本质特征和数量关系的理解.在数学教学中,必须领会和应用数学模型的方法来优化教学过程,从而培养学生的创新思维和实践能力.
【参考文献】
[1]张玫.数学建模在中学教学中的认识[J].考试(高考数学版),2011年Z3期.
[2]苏华.高中数学建模研究课教学的实施策略研究[D].上海师范大学,2006.
[3]谢云鹏.浅谈中学数学建模教学中的基本原则和方法[J].科教新报(教育科研),2010(23).
在学习初等代数的时候,我们就已经接触过数学模型了.当然,那些问题是老师为了教会学生,而人为特意设置的.如我们以前解过这样的所谓“航行问题”.
例如:甲乙两地相距750 km,船从甲到乙顺水航行需要30 h,从乙到甲逆水航行需50 h,求船速、水速分别是多少?
设:用x,y分别表示船速和水速,可以列出方程:
(x+y)·30=750,(x-y)·50=750.
这组方程就是上述航行问题的数学模型,列出方程,原问题已转化为纯粹的数学问题,方程的解x=20 km/h,y=5 km/h,最终给出了航行问题的答案.
所以,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据内在规律作出一些必要的假设,运用适当的数学工具,得到的一个数学结构.数学模型是用数学语言来模拟空间形式和数量关系的模型.广义上讲,一切数学概念、公式、理论体系、算法系统都可称为数学模型,如:算术是计算盈亏的模型,几何是物体外形的模型等.狭义地说,只有反映特定问题的数学结构才称为数学模型,如一次函数是匀速直线运动的模型,不定方程是鸡兔同笼问题的模型等.
二、在探究问题的过程中运用数学模型
数学的思维方式和方法包括对数学问题的认识和解决问题的过程,并在知识的增长过程中发展了思维.在对数学问题的探究中,我们要注重领会用数学模型来优化数学过程,培养学生解决问题和创新思维的能力.
例如:要把数量不限的小球放在同一型号的箱内,每个箱内有10个格子,每一格放一个小球,这些箱子有的格子放有小球,而有的却空着.如果有两个箱子,它们至少一个对应的两个格子,一个有,另一个没有,那么,我们就认为这两个箱子不同.每个箱子最多放10个,最少放0个,问可能有多少个这样的箱子?
模型1 某建筑物装有10盏灯,在同一时刻的每盏灯都可以开或关.现在用各种方法开灯,两种开关方法只要有一盏灯的状态不同(开或关)就认为是不同的开法,所有的灯都关着也是一种开法.问有多少种开法?
模型2 现有一个十列格子组成的长方形表格,在每一行格子中都记有“+”号或“-”号,而行中只要有一个对应格的符号不同,就认为它们不同,问计有不同符号的行有多少种?
模型3 数字0和数字1能组成多少不同的“十位数”(包括数字左边出现的0的数也作为“十位数”)?
模型4 这个问题解决已显而易见,“十位数”的每一个位置只能是0或1两种可能,共有210=1024种不同的可能.模型2中的表格最多有1024行.模型1中的电灯的开法共有1024种.例子中箱子共有1024个.例1可以用三个模型来转换方式,使问题由难变易,是一种行之有效的解题方法.
在高中数学教学中进行数学模型训练,有助于学生加深对数学知识系统的学习,有利于培养学生的创新思维能力和实践能力,并为下一步利用数学模型解决实际问题打下坚实的基础.
三、函数f(x)=ax+b(a,b>0)模型
对于这类模型应用问题,首先根据题意得出目标函数,再把目标函数变形为f(x)=ax+b(a,b>0)的形式,最后根据ax+b≥2ab(a,b>0)求出最优值.
例如:假设森林发生火灾,火势以每分钟100 m2速度顺风蔓延,消防人员接到警报立即派消防队员前往扑救,在火灾发生后五分钟到达现场,现已知消防队员在现场平均每人每分钟灭火50 m2,所消耗的灭火材料、劳务津贴等费用为每人每分钟100元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1 m2森林损失费为60元,问应该派多少消防队员前去救火,才能使总损失最少?
这样的模型应用题出现频率较高,常常通过均值定理或函数的单调性求最值,此时要注意等号能否取到,必要时要讨论求之.
高中数学模型思维方法包括了高中数学问题的学习和解决问题过程,并随着知识的不断增长逐步培养创新思维.数学模型化思维来探索知识的过程,通过对知识原型的分析、提炼、加深,不断对原型的理解和概括,归纳原型的内在特质,再通过进一步演绎推理来求解,深化了对原型的本质特征和数量关系的理解.在数学教学中,必须领会和应用数学模型的方法来优化教学过程,从而培养学生的创新思维和实践能力.
【参考文献】
[1]张玫.数学建模在中学教学中的认识[J].考试(高考数学版),2011年Z3期.
[2]苏华.高中数学建模研究课教学的实施策略研究[D].上海师范大学,2006.
[3]谢云鹏.浅谈中学数学建模教学中的基本原则和方法[J].科教新报(教育科研),2010(23).
热门排行
推荐信息
期刊知识
- 2025年中科院分区表已公布!Scientific Reports降至三区
- 官方认定!CSSCI南大核心首批191家“青年学者友好期刊名单”
- 2023JCR影响因子正式公布!
- 国内核心期刊分级情况概览及说明!本篇适用人群:需要发南核、北核、CSCD、科核、AMI、SCD、RCCSE期刊的学者
- 我用了一个很复杂的图,帮你们解释下“23版最新北大核心目录有效期问题”。
- 重磅!CSSCI来源期刊(2023-2024版)最新期刊目录看点分析!全网首发!
- CSSCI官方早就公布了最新南核目录,有心的人已经拿到并且投入使用!附南核目录新增期刊!
- 北大核心期刊目录换届,我们应该熟知的10个知识点。
- 注意,最新期刊论文格式标准已发布,论文写作规则发生重大变化!文字版GB/T 7713.2—2022 学术论文编写规则
- 盘点那些评职称超管用的资源,1,3和5已经“绝种”了